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Starting from CASSCF(6,6)/6-31G(d,p) wave functions, we consider different valence-bond (VB)-like
interpretations of theπ electron systems for various (constrained) “benzene-like”D6h rings, exploiting the
invariance of the total wave function to arbitrary nonsingular transformations of the active orbitals. Quantities
obtained rather directly from the various calculations provide a fairly consistent ordering of the degree of
aromaticity: C6H6 ∼ B6 > N6 > Al6 ∼ Si6H6 > P6. Representations based on mutually orthogonal orbitals
are found to be somewhat less satisfactory than those that have no such constraints on the overlaps between
the active orbitals.

Introduction

As is well-known, aromaticity is one of a number of
remarkably important but “fuzzy” concepts in chemistry that
does not lend itself easily to widely applicable clear-cut
definitions.1 Theoretical studies tend to emphasize the particular
bonding patterns of theπ electrons, even though theσ
framework must also play a key role in determining the
preference for particular features of the optimal geometries.2

The present work was prompted by a comparative study using
the CiLC method3 of the description of theπ electron systems
in the (constrained) “benzene-like”D6h ring systems in C6H6,
Si6H6, B6, Al6, N6 and P6. A link was suggested between the
degree of aromaticity in these six molecules and the differences
between the weights of certain “minority” valence-bond-like
components in CASSCF wave functions. Unlike those that one
normally envisages in traditional valence-bond (VB) descrip-
tions, the localized orbitals in the CiLC method are orthogonal,
and so we were very interested to compare analogous descrip-
tions that are based instead on nonorthogonal orbitals associated
with valence-bond-like components that dominate the corre-
sponding CASSCF wave functions.

Computational Procedure

Geometries were optimized for the six ring systems at the
CASSCF(6,6)/6-31G(d,p) level within the constraint ofD6h

symmetry, whether or not this leads to the most stable structure.
Our aim, as in the previous work,3 was to compare the
descriptions of theπ bonding for the (constrained) “benzene-
like” geometries. Frequency calculations show the optimized
geometries for C6H6 (rCC ) 1.3961 Å,rCH ) 1.0759 Å) and P6
(rPP ) 2.1213 Å) to be true minima at this level of theory, but
N6 (rNN ) 1.3014 Å) has a sole imaginary frequency: the form
of the corresponding normal mode suggests that this molecule
would remain planar at a lower-energy geometry but would no
longer have equal N-N bond lengths. Al6 (rAlAl ) 2.4586 Å)
also has one imaginary frequency, whereas both B6 (rBB )

1.5997 Å) and Si6H6 (rSiSi ) 2.2292 Å,rSiH ) 1.4697 Å) possess
three imaginary frequencies, and analysis of the corresponding
normal modes shows that nonplanar geometries would be
more stable in these cases. All of these calculations were initially
carried out using the GAUSSIAN98 package4 but the optimi-
zations were subsequently repeated using MOLPRO5 (yield-
ing, of course, the same results). All of the calculations
used the 6-31G(d,p) basis set in Cartesian form (six d
components).

These CASSCF(6,6)/6-31G(d,p) wave functions are of course
invariant to arbitrary nonsingular linear transformations of the
six active molecular orbitals. In the CiLC approach,3 the active
orbitals are localized by means of a unitary transformation that
preserves orthogonality. The weights in the CASSCF wave
function of configurations built from these localized orbitals
are then determined by a subsequent CI calculation, with, of
course, the same configuration list as in the CASSCF. The
outcome is an alternative representation of the original CASSCF
wave function.

The alternative, arguably more rigorous strategy that we
employ here is to perform a general transformation of the
orbitals that, in some sense, maximizes the importance in the
CASSCF wave functionΨCAS of a valence-bond-like component
ΨVB. For this last, we chose here to use a spin-coupled-like
wave function:6

in which theφi are inactive orbitals (taken directly from the
converged CASSCF calculation), theψµ are the six singly
occupied active orbitals (determined as linear combinations of
the CASSCF active orbitals), andΘ00

6 is the optimal active-
space spin function forN ) 6 electrons with spin quantum
numbersS ) MS ) 0. The calculations described here were
performed with the CASVB module7 in MOLPRO,5 which
provides different criteria for choosing the “optimal” transfor-
mation of the active orbitals. One such approach involves
maximizing the overlap betweenΨCAS andΨVB. Specifically,
one maximizes
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Another standard approach involves minimizing the energyEVB

of the VB-like component:

Whichever criterion is chosen, all of the CI coefficients in the
full CASSCF wave function are transformed simultaneously
with the orbitals, so that one of the outcomes is an alternative
representation of the original CASSCF wave function.

As well as the form ofΨVB, it proves useful to examine its
orthogonal complementΨVB

⊥ within ΨCAS, defined according
to

We denote byWi the accumulated total Chirgwin-Coulson8

weight in ΨVB
⊥ of VB-like structures withI doubly occupied

orbitals and we define an effective total weightWVB for ΨVB

by requiring thatWVB + W1 + W2 + W3 is unity (or 100%).
An important additional feature of the CASVB module in

MOLPRO is the ability to perform also fully variational
calculations. This allowed us to calculate fully optimized modern
VB wave functions of the form of eq 1, optimizing all of theφi

and ψµ, as well as the active-space spin functionΘ00
6 . The

results matched those obtained using our own standalone spin-
coupled codes.9 We denote the resulting spin-coupled wave
functionsΨSC.

Within MOLPRO, extracting spin-coupled-like wave func-
tions from CASSCF is several times cheaper than the analogous
fully variational SC calculation, but the CPU time required for
the latter is still rather modest, typically being less than for the
corresponding CASSCF calculation which precedes it.

In all, we performed three types of calculation at the
optimizedD6h geometries listed earlier:

A. Transformation of the CASSCF wave function to an
alternative modern-VB-dominated representation, using theEVB

energy-based criterion (see eq 3), without any constraints on
the overlaps between the active orbitalsψµ.

B. The same as in A, except that all of the active orbitalsψµ
are constrained to be mutually orthogonal.

C. Fully variational determination of spin-coupled wave
functions. We imposedσ-π separation, so as to enable proper
comparisons with A and B.

Results and Discussion
As explained in the previous section, we examined two

different transformations of the CASSCF active space orbitals
that maximize the importance within the total wave function of
a VB-like componentΨVB of the form shown in eq 1. The total
CASSCF wave functionΨCAS and energyECAS are of course
invariant to such a change of representation. The two different
transformations considered here are both based on minimizing
EVB (eq 3) but, in one case, we constrained the active orbitals
ψµ to remain mutually orthogonal. We start by examining the
optimal representation that has no such constraints, so that all
of the ψµ are allowed to overlap with one another.

Given that it is directly optimized, the proximity ofEVB to
ECAS is an important measure of the extent to whichΨVB

dominatesΨCAS. From the energies listed in Table 1, we see
that the differences are 7-8 mhartrees for the rings based on

first-row atoms and 4-5 mhartrees for those based on second-
row atoms. Further indications thatΨVB dominatesΨCAS are
provide by the values ofSVB (eq 2) and the various Chirgwin-
Coulson weights that are listed in Table 1. The accumulated
total Chirgwin-Coulson weightsWi in the orthogonal comple-
mentΨVB

⊥ (eq 4) of structures withI doubly occupied orbitals
are all rather small, and so the effective total weightsWVB for
ΨVB in ΨCAS are all on the order of 99%. The largest contribu-
tions toΨVB

⊥ come from structures with two doubly occupied
orbitals, such thatW2 reaches 1% in Al6. Values ofW1 are some-
what smaller and those ofW3 are almost vanishingly small. The
values ofSVB, which measure the degree of overlap between
ΨVB and ΨCAS, lie in the range 0.993-0.996 for these ring
systems. Slightly higher values could no doubt be achieved by
optimizingSVB, but the differences from unity are already rather
small.

This dominance ofΨVB in ΨCAS makes it very worthwhile
to examine in some detail the optimal form ofΨVB. For each
ring system, we obtained a solution with six symmetry
equivalent, relatively localized nonorthogonal active orbitalsψµ.
These orbitals are shown in in the left-hand column of Figure
1 by means of contours, drawn in a consistent fashion, for the
plane 0.5 Å above the molecular plane. The contour heights
selected for a givenψµ depend only on the maximum value of
|ψµ| in the chosen plane, according to((i/9) max|ψµ| for i )
1, 2, ..., 9. Unbroken contours correspond to positive values
and broken contours (if any) to the analogous negative values.
The same orbitals are also depicted in the left-hand column of
Figure 2, which was generated by selecting isovalues(V with
V scaling with respect to theV ) 0.085 value selected for
benzene asV ) 0.085 max|ψµ|/max|ψµ(C6H6)| where the
max|ψµ| values are those used to select the contour heights in
Figure 1. The remaining active orbitals for each ring system
can of course be obtained from these by symmetry operations
of theD6h point group. Theψµ are clearly based on pπ functions
that are deformed mostly toward neighboring atoms, thereby
enhancing the nearest-neighbor orbital overlaps (which are listed
in Table 1). All of the remaining orbital overaps are somewhat
smaller. A further consequence of the orbital deformations is
the low value ofW1 in each system.

Further insights into the form ofΨVB are provided by
examining the composition of the active-space spin function
(Θ00

6 in eq 1). As is well-known, there are five linearly
independent modes of coupling the spins of six electrons so as
to achieve an overall singlet. For systems of the type considered
here, it is probably most natural to examine the Chirgwin-
Coulson weights of these different modes in the traditional
Rumer basis. Rumer functions 1 and 4 are the familiar Kekule´-
like modes, so that functions 2, 3, and 5 are the para-bonded or
Dewar-like modes. The Chirgwin-Coulson weightsPK of a
single Kekulé-like mode of spin coupling are all of the order
of 38-40% (see Table 1), consistent with fairly traditional VB
notions of aromaticity.

We turn now to analogous representations of the same
CASSCF wave functions, again minimizingEVB, but now
insisting also on mutual orthogonality of all six active orbitals.
As before, we obtained solutions with six symmetry equivalent,
relatively localizedψµ. The shapes of these orbitals are shown
in the right-hand columns of Figures 1 and 2. A key difference
from those obtained without such orthogonality constraints is a
reduction in the degree of deformation toward neighboring
atoms, except that there are now small orthogonalization tails
on the adjacent centers. There is also a dramatic reduction in
the Chirgwin-Coulson weightsPK of a single Kekule´-like mode

SVB )
〈ΨCAS|ΨVB〉

〈ΨVB|ΨVB〉1/2
(2)

EVB )
〈ΨVB|Ĥ|ΨVB〉

〈ΨVB|ΨVB〉
(3)

ΨCAS ) SVBΨVB + (1 - SVB
2)1/2ΨVB

⊥ (4)
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of spin coupling (see Table 2), so that values ofPk are now on
the order of 17-18%, with a higher net contribution from
Dewar-like modes of spin coupling. It is also clear from Table
2 that the values ofEVB are somewhat discouraging. Indeed,
the values ofSVB (not listed) are also very small indeed, so that

our analysis of the (large) orthogonal complement is somewhat
less meaningful than before. As shown in Table 2, the largest
contributions toΨVB come from structures with one doubly
occupied orbital (47-49%), with also significant values forW2

(17-25%) and even nontrivial values ofW3 (exceeding 2% in
B6 and C6H6). For each of these ring systems, the values of
WVB are significantly lower than are those ofW1. All in all,
this particular representation ofΨCAS is rather disappointing.

TABLE 1: Key Quantities Obtained by Optimizing the Importance of ΨVB in ΨCAS, without Constraints on the Overlaps
between Active Orbitalsa

ECAS/hartree EVB/hartree W1/% W2/% W3/% WVB/% SVB ∆12 Pk/%

B6 -147.58646 -147.57957 0.26 0.80 0.03 98.91 0.994 0.524 40.1
C6H6 -230.78709 -230.77945 0.29 0.64 0.02 99.05 0.995 0.524 40.5
N6 -326.55682 -326.54893 0.36 0.45 0.01 99.18 0.996 0.503 39.7
Al6 -1451.14614 -1451.14161 0.31 1.08 0.06 98.56 0.993 0.483 38.0
Si6H6 -1736.92653 -1736.92173 0.33 0.85 0.04 98.78 0.994 0.481 38.5
P6 -2044.34756 -2044.34329 0.37 0.55 0.02 99.06 0.995 0.453 37.9

a See also eqs 1-4 and the definitions in the text.∆12 is the nearest-neighbor orbital overlap andPK is the Chirgwin-Coulson weight of a single
Kekulé-like mode of spin coupling.

Figure 1. Contours in the plane 0.5 Å above the molecular plane of
symmetry unique active orbitals for variousD6h ring systems, generated
by transforming the CASSCF wave function (a) without constraints
on the overlaps between the active orbitals (left-hand column) and (b)
with mutual orthogonality imposed (right-hand-column). Projected
positions of the nuclei are shown by chemical symbols, together with
the molecular framework. Contour heights were selected using the
scheme described in the text.

Figure 2. Symmetry unique active orbitals for variousD6h ring systems,
generated by transforming the CASSCF wave function (a) without
constraints on the overlaps between the active orbitals (left-hand
column) and (b) with mutual orthogonality imposed (right-hand-
column). Isovalues(V were selected using the scheme described in
the text. The orbitals are the same ones as those shown in Figure 1.
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Before examining further these various sets of numerical
values, it is instructive also to consider the outcome of fully
variational optimization of wave functions (ΨSC) of the form
shown in eq 1. The resulting total energiesESC are listed in
Table 3, together with various other quantities. As before, we
obtained solutions with six symmetry equivalent, relatively
localized nonorthogonal active orbitalsψµ. The shapes of these
orbitals are practically indistinguishable by eye from the
nonorthogonal set shown in the left-hand columns of Figures 1
and 2. The reoptimization of the inactive orbitals, and the
freedom of theψµ to incorporate (small) contributions from the
CASSCF virtual space, leads only to a very modest lowering
of ESC over the corresponding value ofEVB (Table 1). Similarly,
there are only very small changes in the nearest-neighbor orbital
overlaps and the Chirgwin-Coulson weights of a single Kekule´-
like mode of spin coupling, so that the fully variational wave
function is very similar indeed to the very strongly dominant
ΨVB component ofΨCAS, described earlier. To a very large
extent, we may considerΨSC and the (unconstrained)ΨVB to
be almost interchangeable in our subsequent analysis.

It is entirely straightforward to evaluate the total energy
corresponding to various subsets of the full spin space, without
reoptimizing any of the inactive or active orbitals inΨSC. We
report in Table 3 the energiesE1K andE2K for a single Kekule´-
like mode of spin coupling and for both such modes, respec-
tively. The relatively small values of|ESC - E2K| provide further
confirmation of the dominance of these Kekule´-like modes in
the active-space spin coupling patterns. The differencesERES

) |ESC - E1K| may be regarded as spin-coupled estimates of
the resonance energy and it could be useful also to examine
the proportion (QRES) that such values represent of the total
active-space-only electronic energies. Values ofEres and Qres

are collected in Table 3. In our opinion, comparingQres values
is more meaningful than comparing the actual resonance
energiesEres, as theQresvalues are much less dependent on the
environments “inhabited” by the active electrons in the different
rings (consider the fact that the Hartree-Fock energies of the
occupiedπ orbitals, e.g., in N6, are lower than the energies of
the corresponding orbitals in C6H6). It should be emphasized
that neither of the other two quantities we use to analyze relative
aromaticities, the nearest-neighbor orbital overlap∆12 or the
Chirgwin-Coulson weight of a single Kekule´-like mode of spin
coupling PK, is influenced appreciably by the “inactive” part
of the molecule.

Examining various quantities from the descriptions without
constraints on the overlaps between the active orbitals, we
observe a fairly consistent ordering of the different ring systems
according to their degree of aromaticity:

Except for minor reordering of similar values, this is the case
for ∆12 (nearest-neighbor orbital overlap),PK (Chirgwin-
Coulson weight of a single Kekule´-like mode of spin coupling)

and Qres (resonance energy scaled by the active-space-only
electronic energies). We observe that the basic pattern is much
the same for the rings based on first-row or second-row atoms,
but that values for the first-row rings are larger than are those
for their second-row analogues. The differences between the
aromaticities of rings constructed from atoms from the same
row are much smaller than those corresponding to rings of atoms
from different rows.

The representation based on orthogonal active orbitals is
somewhat different. In the limit of strictly localized orbitals, as
in classical VB, we could interpret structures with doubly
occupied orbitals as “ionic”. With this in mind, we see from
Table 2 that the ring systems that appeared to be most aromatic
actually turn out to be the least covalent, in the sense of having
the smallest values ofWVB. Indeed, the largest net contributions
to ΨCAS are due to the singly ionic structures, with the largest
values ofW1 corresponding to the largest values of∆12, PK and
Qres in the nonorthogonal description. TheseW1 values, which
measure to a large extent the inability of a strictly orthogonal
description to describe properly the orbital deformations (and
so on) seen in the unconstrained representations, are ordered as

This pattern does of course coincide with the one presented
earlier and so, in principle, could be used as an alternative
measure of the degree of aromaticity. Nonetheless, we consider
this a somewhat perverse approach, given that theseW1 values
measure to a large extent the inadequacy of the covalent-only
orthogonal orbital description.

Sakai has suggested an alternative criterion for the aromaticity
of these six-membered rings, using the differences between the
weights of different contributions to a particular orthogonal
orbital representation of the CASSCF wave functions.3 In
essence, the CiLC (CI/LMO/CASSCF) method involves local-
izing the CASSCF active-space canonical orbitals using the Boys
criterion, and then performing a CI calculation using the same
configuration list as in the CASSCF.10 As in our own work,
the outcome is an alternative representation of the full CASSCF
wave function. The CI calculations in the CiLC study were
performed at the determinantal level, so that the largest single
contribution for each system comes from the “covalent’ ar-
rangement (with six singly occupied orbitals) with alternating
one-electron spins (R, â) around the ring. Further covalent
arrangements, but with adjacent pairs ofR or â spins, were
labeled “singlet coupling” terms. Similarly, singly ionic ar-
rangements with adjacent charges (i.e., with one doubly occupied
orbital neighboring an empty site), but otherwise alternatingR
andâ spins around the ring, were labeled “polarization” terms.
The relevant sums of squares of CI coefficients were taken as
the overall weights of these so-called singlet coupling and
polarization terms. The proposed new criterion in ref 3 relies
directly on the difference between these two weights, with
smaller differences or “gaps” supposedly indicating higher
aromaticity. The resulting ordering appears to be as follows:

where the numbers in brackets are our own estimates of the
relatiVe gaps, based on examining Figure 7 in that paper. For
these six molecules, the gap increases rather rapidly both across
a row and down a column of the periodic table, so that this
quantity does not provide a linear measure of the degree of
aromaticity. On closer examination of Sakai’s Figure 7,3 we

TABLE 2: Key Quantities Obtained by Optimizing the
Importance of ΨVB in ΨCAS, Subject to Orthogonality
Constraints between All of the Active Orbitalsa

EVB/hartree W1/% W2/% W3/% WVB/% Pk/%

B6 -147.02918 49.03 25.36 2.37 23.24 17.1
C6H6 -230.11572 49.16 24.41 2.20 24.23 17.3
N6 -325.86433 48.72 20.82 1.65 28.80 17.6
Al6 -1450.89579 48.21 22.21 1.92 27.65 17.0
Si6H6 -1736.63380 48.15 21.01 1.74 29.10 17.3
P6 -2044.07052 46.57 16.64 1.18 35.61 17.5

a The various symbols have the same meaning as in Table 1.

C6H6 ∼ B6 > N6 > Al6 ∼ Si6H6 > P6

B6

(2.5)
< C6H6

(10)
< Al6

(39)
< N6 ∼ Si6H6

(49)
< P6

(112)

C6H6 ∼ B6 > N6 > Al6 ∼ Si6H6 > P6
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notice that the variation in the singlet coupling weight is much
more dramatic than that for the polarization weight, and so it
accounts for much of the variation in the “gap” from one system
to another. This is both a convenience, because it means that
fewer coefficients need to be analyzed, and also a potential cause
for concern. As in our own orthogonal orbital representation of
each system, the total weight of all the covalent contributions
must be relatively small. By concentrating on a subset of those
contributions, with weights that are less than 0.021 for B6 and
that are still less than 0.032 for P6, this particular criterion of
aromaticity seems to us to rely rather heavily on examining
rather minor contributions to the total wave function. In this
sense, at least, we prefer our own criteria that are based instead
on quantities that are derived directly from a largely predominant
component of the total wave function.

A magnetic criterion for the aromaticity of these systems is
provided by the contributions from theπ bonds to the total
nucleus-independent chemical shift (NICS) values calculated
for a point 0.5 Å above the ring center. The NICS(π) values
reported by von Schleyer and co-workers11 are C6H6 (-16.8),
N6 (-15.9), P6 (-14.7) and Si6H6 (-14.1). All results discussed
in the present paper lead to the conclusion that C6H6 is more
aromatic than N6, and that theD6h rings based on first-row atoms
are more aromatic than their second-row analogues. On the other
hand, our criteria as well as the one used by Sakai3 suggests
that Si6H6 is more aromatic than P6, whereas the fairly close
NICS(π) values suggest the opposite order.

The C6H6, N6, P6 and Si6H6 (constrained)D6h rings have also
recently been considered by Engelberts et al.12 who used a
combination of VB calculations based on strictly atomic
nonorthogonal orbitals, fully variational spin-coupled calcula-
tions, and the analysis of current-density maps in a study of
various “inorganic benzenes”. All four of these homonuclear
systems showed characteristics of aromaticity, similar to those
described here. Indeed, were it not for some differences in the
basis sets and geometries, the fully variational spin-coupled
results in their paper and in ours would coincide. They report
that C6H6 and N6 show strong ring currents, with those for the
second row analogues being less than half the strength calculated
for benzene.

Conclusions

Starting from CASSCF(6,6)/6-31G(d,p) wave functions, we
have considered different interpretations of theπ electron
systems for various (constrained) “benzene-like”D6h rings,
exploiting the invariance of the total wave function to arbitrary
nonsingular transformations of the active orbitals. Various
quantities that are obtained rather directly from our various
calculations provide a fairly consistent ordering of the degree
of aromaticity in these different ring systems: C6H6 ∼ B6 >
N6 > Al6 ∼ Si6H6 > P6.

It may of course be most convenient for many purposes to
use canonical orbitals that transform as irreducible representa-

tions of the molecular point group. For others, it may be more
instructive to examine representations of the CASSCF wave
function that are based on relatively localized orbitals, perhaps
resembling those envisaged in classical valence bond theory.
Ultimately, though, none of these representations of precisely
the same total wave function is any more “correct” than any
other. On the other hand, if a representation based on orthogonal
orbitals appears (at first sight) to give a conflicting assessment
of the various VB-like characteristics of that wave function,
then it could be useful to bear in mind that valence bond theory
is of course traditionally based on notions of nonorthogonal
localized orbitals. Our own particular preference, as illustrated
here, is to consider representations in which a very compact
VB-like component based on nonorthogonal relatively localized
orbitals is overwhelmingly dominant. We also find, at least for
the systems considered here, that subsequent variational opti-
mization of such a VB-like description leads only to rather
modest further changes.
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TABLE 3: Total Spin-Coupled Energies (ESC) and Nearest-Neighbor Orbital Overlaps (∆12) from Fully variational
Optimizationa

ESC/hartree ∆12 PK/% E1K/hartree E2K/hartree Eres/mhartree Qres/%

B6 -147.57970 0.524 40.1 -147.55423 -147.57942 25.5 0.495
C6H6 -230.77955 0.524 40.4 -230.74770 -230.77921 31.8 0.494
N6 -326.54898 0.503 39.7 -326.51048 -326.54839 38.5 0.457
Al6 -1451.14172 0.484 38.1 -1451.12814 -1451.14145 13.6 0.389
Si6H6 -1736.92181 0.481 38.5 -1736.90525 -1736.92148 16.6 0.382
P6 -2044.34332 0.453 37.9 -2044.32504 -2044.34282 18.3 0.352

a Also listed are the values ofE1K, E2K, Eres, andQres described in the text, and the Chirgwin-Coulson weights (PK) of a single Kekule´-like mode
of spin coupling.
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